Stability of an Electric Vehicle with Permanent-Magnet In-Wheel Motors during Electrical Faults
نویسندگان
چکیده
This paper presents an analysis of the stability of an electric vehicle equipped with in-wheel motors of permanent-magnet type during a class of electrical faults. Due to the constant excitation from the permanent magnets, the output torque from a faulted wheel cannot easily be removed if an inverter shuts down, which directly affects the vehicle stability. In this paper, the impact of an electrical fault during two driving scenarios is investigated by simulations; using parameters from a 30 kW in-wheel motor and experimentally obtained tire data. It is shown that the electrical fault risks to seriously degrading the vehicle stability if the correct counteraction is not taken quickly. However, it is also demonstrated that vehicle stability during an electrical fault can be maintained with only minor lateral displacements when a closed-loop path controller and a simple method to allocate the individual tire forces are used. This inherent capacity to handle an important class of electrical faults is attractive; especially since no additional fault-handling strategy or hardware is needed.
منابع مشابه
Double Layer Magnet Design Technique for Cogging Torque Reduction of Dual Rotor Single Stator Axial Flux Brushless DC Motor
Cogging torque is the major limitation of axial flux permanent magnet motors. The reduction of cogging torque during the design process is highly desirable to enhance the overall performance of axial flux permanent magnet motors. This paper presents a double-layer magnet design technique for cogging torque reduction of axial flux permanent magnet motor. Initially, 250 W, 150 rpm axial flux brus...
متن کاملGeometry optimization of five-phase permanent magnet synchronous motors using Bees algorithm
Among all types of electrical motors, permanent magnet synchronous motors (PMSMs) are reliable and efficient motors in industrial applications. Because of their superiority over other kinds of motors, they are replacing conventional electric motors. On the other hand, high-phase PMSMs are good candidates to be used in certain industrial and military projects such as electric vehicles, spacecraf...
متن کاملElectric Differential for an Electric Vehicle with Four Independent Driven Motors and Four Wheels Steering Ability Using Improved Fictitious Master Synchronization Strategy
Using an Electric Differential (ED) in electric vehicle has many advantages such as flexibility and direct torque control of the wheels during cornering and risky maneuvers. Despite its reported successes and advantages, the ED has several problems limits its applicability, for instance, an increment of control loops and an increase of computational effort. In this paper, an electric differenti...
متن کاملCharacterization of Winding Faults in Axial Flux Reluctance
Nelson, Andrew Lincoln: Characterization of Winding Faults in Axial Flux Reluctance Motors in the Context of Electric Vehicle Propulsion Systems. (Under the direction of Dr. Mo-Yuen Chow.) Since the late 1980’s there has been a major resurgence in electric vehicle propulsion research and development. This trend has been stimulated by various factors, including rising fossil fuel costs, environm...
متن کاملOptimization of Specific Power of Surface Mounted Axial Flux Permanent Magnet Brushless DC Motor for Electrical Vehicle Application
Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined...
متن کامل